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ABSTRACT 

The topic of this paper is the role intuition can play in the mathematical practice of 

conjecturing. More precisely, it addresses the question of how intuitions can serve 

to rationally form fruitful conjectures. To succeed in making fruitful conjectures, 

various conditions must be fulfilled. Syntactic capacities paired with unwarranted 

truth claims are not sufficient. Conjecturing is not guesswork and not all intuitions 

are of the same relevance to it. The kind of intuition that can and often does play a 

leading role in the practice of conjecturing is typically invoked by experts. But even 

if a statement is suggested by expert intuition, the attempt to conjecture it may still 

fail due to insufficient justification. In such cases, one has to offer other reasons 

why the statement should be considered probably true and worth investigating. 

Although an established conjecture may of course still prove to be false, this need 

not undermine its fruitfulness. For in mathematics, the refutation of an interesting 

claim can be the proof of an equally intriguing statement. And when it comes to 

identifying what is potentially fruitful, intuition has again a crucial role to play. This 

paper aims to show that the unwritten rules, implicit criteria and intellectual powers 

at work in the art of conjecturing are indeed a valuable field of investigation for 

epistemology. It is also an attempt to contribute to the larger issue of how intuition 

relates to knowledge and truth in mathematics. 

Keywords: conjecturing, mathematical intuition, philosophy of mathematical 

practice 

1. Introduction 

To make conjectures is an essential part of mathematical practice. A 

good conjecture can captivate generations of mathematicians and shape the 

development of entire fields. Just think of the Riemann hypothesis or the 

Langlands program. Despite its obvious importance, the practice of 

conjecturing has not always received the attention it deserves in the 

philosophical literature. Perhaps, this is because conjecturing is typically 

associated with what are called contexts of discovery. But the philosophy of 

mathematics, it has been maintained, can only be concerned with contexts 
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of justification. Questions pertaining to discovery would have to be 

relegated to other disciplines such as psychology or sociology.1 

This dismissive attitude may seem all the more plausible when one 

considers the importance that is often attached to intuition in forming 

conjectures. For philosophy has a long history of separating intuition from 

discursive rationality. Intuition has often been, and not seldom still is, 

understood as the faculty of the mind to directly apprehend truth without 

recourse to reasons. Intuitions, as products of this faculty, are thus 

considered self-sufficient and in no need of further justification, be it in the 

form of proof or less rigorous arguments: Either you see the truth, or you 

don’t. But that seems to leave nothing for philosophy to investigate. 

Justifications, on the other hand, are supposed to rely as little as possible on 

intuitive insight if they are to bring the kind of certainty typical of modern 

mathematics.2 Here, rigorous proof can be required even of the most trivial 

truth. It may seem compelling, therefore, to deny intuition any essential role 

within mathematical contexts of justification. One might concede that 

intuitions are involved in contexts of discovery: in developing new concepts, 

in forming hypotheses, even in exploring possibilities of proof. But in the 

finished proofs themselves as well as in any other justificational work, 

intuitions seem inessential and dispensable. 

Against this I would like to maintain not only that conjecturing, as it 

occurs in mathematical research, is indeed a rational practice but also that 

one can grant intuition a crucial role in this practice without jeopardising its 

rationality.3 The question I would like to address, therefore, is how intuitions 

 

1 A clear commitment to this view can be found, e.g., in Dummett 1991, 305. For an 

early and resolute critique of this view, see Lakatos 1976. Influential papers discussing the 

context distinction in general include Blackwell 1980 and Hoyningen-Huene 1987. For more 

recent contributions, see Schickore and Steinle 2006. 
2 For a classical formulation of this view, see Hahn 1933, 93; for a critical reassessment, 

see Feferman 2000, 319-322. 
3 The fact that intuition plays an important role in conjecturing is widely accepted. 

Carlo Cellucci’s refusal to assign intuition any significant role even in contexts of discovery 

is rather exceptional. His rejection is directed at what he calls “the dominant view” according 

to which “mathematical discovery is an irrational process based on intuition, not on logic” 

(Cellucci 2006, 28). Against this view, he rightly maintains that in mathematics even 

discovery is a “rational activity”. Where he is mistaken is when he infers from this that 

intuition “does not provide an adequate explanation as to how we reach new hypotheses” 

(28), emphasising the separation of intuition from discursive rationality. However, as pointed 

out in Hersh 2011, 42, Cellucci’s dismissive stance is due to his narrow use of the term 

‘intuition’, taking it as synonymous with ‘immediate knowledge’, thus implying direct 

apprehension of truth without recourse to reasons (see also Cellucci 2017, 232). In keeping 
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can, and do, serve to rationally form fruitful conjectures eventually leading 

to truth. 

Furthermore, I would like to emphasise that it is very much a job for 

philosophy to provide an epistemological account of conjecturing. This is 

not to deny that questions belonging to other disciplines may be touched 

upon. On the contrary, it is one of the main tasks of the philosophy of 

mathematical practice to prepare the ground for non-philosophical 

investigations by clarifying conceptual landscapes, dissolving possible 

misunderstandings, and setting out well-structured accounts of different 

sub-practices. To achieve this, however, the strict separation of 

mathematical activity into contexts of discovery and contexts of justification 

should be abandoned. The example of conjecturing makes this particularly 

clear. 

As liberal as the practice of conjecturing may seem, anyone who wishes 

to succeed in making a conjecture must abide by certain rules. In particular, 

no statement known to be true or known to be false will be considered a 

serious candidate for conjecturing. Although those who advance a 

conjecture typically tend to believe that its statement is true, they do not 

know it. To gain certainty, the conjecture has either to be proved or 

disproved. This, however, can be extremely difficult and time consuming. If 

the statement appears to be of the more elusive kind, one might be compelled 

therefore to convince oneself or others that it is worth to investigate its truth 

nevertheless. And here, intuitions about the statement’s being true and 

possibly fruitful may be offered as reasons for taking up an investigation. 

But this will not always suffice. For the conjecture to be accepted as 

worthwhile, it will sometimes be necessary to corroborate such intuitions 

with arguments, ideally of a mathematical nature. In cases where the 

conjectured statement goes against common intuition, it is even more likely 

that a justification for investigating its truth will be demanded. As a result, 

the initial intuition may not only be rejected, but also replaced by an 

improved one. It is precisely in such contexts of conjecture forming – which 

are clearly contexts of justification – that intuition and discursive rationality 

come together. That the philosophy of mathematics should refrain from 

investigating such processes seems to me rather misguided. 

 

with common usage, the term ‘intuition’ is taken here in a broader sense, as will become clear 

in the next section. 
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Before turning to the question that has just been raised, the next section 

will first introduce some basic distinctions to clarify different uses of the 

term ‘intuition’. The aim here is to identify the notion of intuition most 

relevant to our investigation. The third and main section, then, offers 

elements of an epistemological account of conjecturing as practised in 

mathematics. This includes discussions of necessary conditions for 

successfully making conjectures and for their becoming fruitful. Along the 

way, it will be seen in which different ways intuition can contribute to the 

rational activity of forming conjectures. The results of this investigation are 

intended to provide a suitable starting point for shedding further light on the 

practice of conjecturing by means of in-depth analyses of historical 

examples. Such analyses cannot be carried out within the scope of this paper. 

2. Mathematical intuition 

The history of the term ‘intuition’ and the various meanings that have 

been attributed to it throughout the centuries is a vexed one. Surely, there is 

a colloquial use of the word with which the use in philosophy is connected. 

But, as Charles Parsons rightly remarks, neither the pre-philosophical nor 

the philosophical uses of the term ‘intuition’ seem to point to a fundamental 

notion on which there is sufficient agreement (Parsons 2008, 138-9). 

Different acceptations of the term stand side by side, and, unfortunately, they 

are thrown together or mixed up more often than not.4 

For the philosophy of mathematics, this has not always been the case. 

Through Immanuel Kant’s influence on philosophy in general and on the 

philosophy of science in particular, his technical use of the term 

‘Anschauung’, translated into English as ‘intuition’, dominated 

philosophical discourse on mathematics for a long time. Having lost its 

dominant status in the meantime, aspects of the Kantian notion are still 

present, if often only implicitly and alongside other uses of the term. In order 

 

4 In Davis and Hersh 1981, 391-392, six different ways in which the term ‘intuition’ is 

used by mathematicians are listed. Yet the authors note that in “all these usages the notion of 

intuition remains rather vague” (392). See Burgess 2014, 31, for a more philosophically 

based taxonomy of intuition. Disagreement about how to understand the term ‘intuition’ 

when applied in mathematical contexts is not limited to philosophy. The term’s ambiguity 

and the difficulty of grasping the phenomena it is supposed to denote cause problems also in 

the psychological literature. Jean Piaget once said that “[n]othing is harder for a psychologist 

to understand than what mathematicians mean by intuition” (Beth and Piaget 1966, 208). For 

a recent account of the situation in mathematics education research, largely confirming 

Piaget’s bon mot, see Lajos 2023. 



   

 
5 

to delineate the notion relevant to our investigation, it is contrasted in what 

follows with a broadly Kantian notion.  

2.1. Objectual intuition in the Kantian tradition 

An intuition, in the Kantian sense, is the direct representation of a 

particular object. Kantian intuitions are always intuitions of an object, never 

that something is or is not the case. It makes no sense, therefore, to ask 

whether an intuition, taken in the Kantian sense, is true or not. Only 

judgments, or their statements, are capable of being true or false. When an 

assertive judgement contains an intuition, it says something true or false 

about the object directly given in the intuition. For example, I could judge 

that the thing in front of my eyes is a table. This would be a judgment joining 

an empirical intuition with the concept of a table which, as a concept, is a 

general representation. According to Kant, the judgements of pure 

mathematics are special in that they contain only pure intuitions, that is no 

intuitions of particular empirical objects. Contrary to empirical objects 

which are given through sensation, the objects of pure intuitions are 

constructed by the imagination alone. In constructing the objects of 

mathematics, the imagination conforms with the general forms of intuition, 

i.e. with space and time. This is why mathematical judgments typically 

contain an intuitive element and Kant classifies them as synthetic a priori. 

In this they contrast with philosophical judgments which are the result of 

discursive rationality unsupported by intuition (see the beginning of Kant’s 

Transcendental Doctrine of Method, which forms the second part of his 

Critique of Pure Reason, A 712-738 / B 740-766). 

From a Kantian perspective, our initial question – as to the possibility 

of rationally forming conjectures based on intuition – would seem obviously 

misguided. A Kantian would rather ask in return how intuition could not 

play a crucial role in conjecturing, given that the bulk of mathematical 

propositions are synthetic truths and thus by definition based on intuition. 

From these short considerations already, it is clear that the notion of intuition 

relevant to our undertaking must be at some distance from the Kantian 

tradition. What are the main differences? 

2.2. Propositional intuition in experts 

First, and foremost, intuitions in the sense intended here are not 

objectual, but directed at propositions (or statements). For mathematical 

propositions are, of course, what one is after in the practice of conjecturing. 

And if intuition is to be of any great value for this practice, then primarily 
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(although not exclusively) as a source from which such propositions flow. 

An intuition, in the sense intended here, is therefore a propositional attitude 

that may be denoted by expressions like “I have the feeling that ...” or “It 

seems to me that …” or “I tend to think that ...” etc. Note that there is nothing 

artificial about this way of using the term ‘intuition’. In fact, it is closer to 

common usage than the objectual variant derived from Kant. 

Another important difference is that intuitions in our sense are not bound 

to spatial or temporal imagination. They need not depend on images or 

diagrammatic representations at all. A group theorist, for example, could 

have a highly abstract intuition about the existence of certain structures 

without being able to visualise the states of affairs at hand. Mathematical 

intuitions of this sort seem to be more akin to linguistic intuitions. And in 

this sense, even set theorists or logicians can be said to have intuitions about 

their subject matter. Note that such a wide use of the term ‘intuition’ is not 

as unusual as some philosophers of mathematics might be inclined to think.5 

This, of course, is not to deny the fact that spatial intuition is an 

important source for conjecturing in many areas of mathematics. However, 

its usefulness also has its limits. There are enough cases known from history 

in which mathematicians were misled by the inaccuracy of spatial intuition. 

(The Banach-Tarski paradox, which will be discussed in the next section, is 

arguably a case in point.) Conversely, if the intuition is so clear and distinct 

that the statement flowing from it appears evident enough to make a proof 

almost superfluous, it will hardly lead to a fruitful conjecture. Take for 

example the statement that every simple polygon divides the plane into an 

interior and an exterior region. More precisely: 

Let 𝑃 be a simple polygon in the plane ℝ2. Then its 

complement, ℝ2 ∖ 𝑃, consists of exactly two connected 

components. One of these components is bounded (the 

 

5 See, for a locus classicus, Henri Poincaré’s The Value of Science, where a distinction 

is drawn between intuition based on concrete sensory experience and pure intuition (Poincaré 

1958, 19-25). A more recent elaboration can be found in Chudnoff 2014, where the view of 

intuition “as concrete illustration” is distinguished from the “perceptualist view of intuition” 

(175-176), which in turn is divided into a Kantian and a non-Kantian branch. The latter view, 

which the author endorses, is described as non-Kantian, for it concedes that “at least some 

mathematical intuitions are cognitive and not limited by our capacity for sensory 

representation” (184). The Cantor set is offered as an example of a mathematical object that 

is intuitable, although it outstrips our sensory capacities. Feferman 2000 discusses in detail 

various intriguing cases where “common-sense geometrical intuition” and “set-theoretical 

intuitions” seem to clash (327). 
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interior) and the other is unbounded (the exterior), and the 

polygon 𝑃 is the boundary of each component. 

Our intuition of Euclidean planes and simple polygons leaves no doubt as 

to the truth of this statement. While it may have been a sensible conjecture 

to make at a certain point in the distant past, it surely did not have the 

potential to become a fruitful conjecture. It is not, in any way, a deep result 

and a proof, even a rigorous one, is too easily at hand.6 If contemporary 

textbooks contain a proof at all, it is only for didactic reasons: as an occasion 

to practice the art of proving. 

To be clear, the same does not hold true for the generalised version of 

this statement, which became Camille Jordan’s famous curve theorem. The 

Jordan curve theorem states the same as the lemma above, but for Jordan 

curves in general. A Jordan curve is any image of an injective continuous 

map of a circle into the plane ℝ2.7 In its full generality, this theorem is surely 

not trivial as in the special case of polygons. This is because “a Jordan curve 

can be quite fantastical in the sense that there are some bizarre properties 

such a curve might have (jagged at every point, space filling, etc.) or that 

 

6 See Hales 2007, 46. However, this is not to say that a statement which is intuitively 

very plausible or even evident could not be of major importance, e.g. in virtue of its important 

applications. A case at hand here is Desargues’s theorem about which Gian-Carlo Rota writes 

the following: “The proof of Desargues’s theorem of projective geometry comes as close as 

a proof can come to the Zen ideal. It can be summarized in two words: ‘I see!’ Nevertheless, 

Desargues’s theorem is far from negligible, despite the simplicity of its proof. It has found 

far more applications, both in geometry and beyond, than any theorem of number theory, 

maybe more applications than all the theorems of analytic number theory put together” (Rota 

1997, 189). The reason for this, Rota tells us, is the theorem’s connection with a certain 

geometric structure that is now called the Desargues configuration: “The role of Desargues’s 

theorem was not understood until the Desargues configuration was discovered. […] The 

value of Desargues’s theorem, and the reason why the statement of this theorem has survived 

through the centuries, while other equally striking geometrical theorems have been forgotten, 

lies in the realization that Desargues’s theorem opened a horizon of possibilities that relate 

geometry and algebra in unexpected ways” (192). 
7 Bernard Bolzano seems to have been the first to judge the statement in its general 

form to be worthy of proof. This is why he went on to conjecture it. Jordan gave a proof that 

was criticised and replaced by Oswald Veblen. For a long time, the opinio communis relied 

on Veblen’s claim that Jordan’s original proof was substantially incomplete. Thomas Hales 

who gave the first formalised version of a proof, showed, however, that Jordan’s original 

proof was not as problematic as supposed, but rather satisfactory and more elegant than 

Veblen’s proof (Hales 2007). Either way, the Jordan curve theorem was, in turn, generalised 

by Arthur Schoenflies and later by Luitzen Brouwer to become the separation theorem. 

Because of this subsequent history alone, it would be wrong to deny fruitfulness to the 

conjecture first put forward by Bolzano and proven by Jordan. 
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such a curve can have a difficult to discover inside and outside” (Ross and 

Ross 2011, 213). Yet the Jordan curve theorem is often cited as an example 

of a statement whose truth is intuitively obvious but not easy to prove 

rigorously. I suspect that the intuitiveness of simple cases, such as polygons, 

is here transferred to the general case without much caution. If one considers 

the sheer variety of possible Jordan curves that the theorem deals with, its 

alleged obviousness fades. 

For our purposes here, it is sufficient to note that a statement fails to 

exemplify the kind of intuition most relevant to the practice of conjecturing 

if its truth is as intuitively evident as in the case of the simple lemma above. 

To be established as a conjecture, a statement suggested by intuition must 

be worth proving or disproving – and not only for didactical reasons. That 

means that even its simplest proof or refutation should be “hard” enough as 

to have the potential to spark the interest of the relevant mathematical 

community. Trivialities do not meet this requirement and it is very unlikely 

that it could be met by the sort of mathematical intuition most humans share. 

What we are after here is therefore advanced intuition: the sort of intuition 

typically invoked by experts in any given field. 

In order to elucidate how expert intuitions have proven themselves in 

the mathematical practice of conjecturing, it is not necessary to posit them 

as the product of some mysterious faculty of the mind. When using the term 

‘intuition’ in the singular, one speaks sometimes as if there were a special 

faculty responsible for producing different intuitions. Although this way of 

speaking is convenient, it should not be taken to imply the assumption that 

there is in fact a single such faculty. It seems more likely that a variety of 

different faculties are involved. This is true even if one considers only those 

more abstract intuitions that do not flow from spatial or temporal 

imagination, as can be the case in set theory. The assumption of a single 

faculty at work here – of a purely intellectual intuition detached from the 

senses – does not appear to be sufficiently justified.8 It would be all the more 

 

8 This alleged faculty of the intellect, which plays a prominent role in Kurt Gödel’s 

philosophy of mathematics, but also has an ancient philosophical pedigree, is sometimes 

called ‘rational intuition’, see Parsons 2008, ch. 9. It corresponds to what in Chudnoff 2014 

is described as the non-Kantian version of the perceptualist view of intuition (see note 5). 

John Burgess rightly emphasises the plausibility of alternative explanations: “The crucial 

philosophical question is simply whether there is any real need to posit a special intellectual 

faculty in order to account for the experiences of the kind Gödel describes […] or whether, 

on the contrary, such experiences can be explained in terms of faculties already familiar and 

less problematic. For there are other, more mundane, varieties of nonsensory intuition, and a 
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dubious to deduce from the occurrence of such non-sensory intuitions not 

only the existence of a special intellectual faculty, but also the existence of 

a Platonic realm of entities providing this faculty with its fitting objects. For 

the purposes of the present investigation, however, the ontological question 

can be set aside without prejudice to any particular position on the matter. 

As to the question of which cognitive faculties are involved in the 

production of mathematical intuitions, it is ultimately a psychological one. 

While avoiding the dogmatic assumption of a purely intellectual faculty 

of intuition that would allow direct access to mathematical truth without 

recourse to discursive rationality, we may safely assume that expert 

intuitions are grounded in experience. The intuitive familiarity with 

mathematical concepts, and the deep understanding of their 

interconnections, that is required for good conjecturing usually implies 

years of dedicated work as a specialist in a chosen field (although in 

geniuses, acute expertise may manifest itself without the usual amount of 

practice). In this respect, such intuitions are the opposite of common 

intuitions, which are shared by most and border triviality. Expert intuitions 

will strike others, especially non-experts in the field, as too difficult to 

venture guessing their truth value or even their meaning. As one purpose of 

using them is to allow for mathematical research to advance into unknown 

territory, such intuitions may seem bold when they are first advanced. And, 

of course, they may deceive their holders and turn out to be false. Expert 

intuition is fallible, which is why the mathematical statements it suggests 

may require some justification in order to qualify as worth investigating. But 

typically, what emerges from expert intuition looks interesting enough to 

spark the community’s interest. This makes it a favourite source for forming 

fruitful conjectures.9 

Contrary to what one might think, the fact that expert intuitions are not 

readily shared by many does not preclude the possibility of transmission. As 

pointed out by Elijah Chudnoff, experts can make the content of (at least 

some of) their intuitions accessible to others, even to novices, by guiding 

 

skeptic might suspect that one or another of them is what is really behind Gödelian 

experiences” (Burgess 2014, 22-23). A further reason that speaks against the assumption of 

rational intuition is the lack of criteria to distinguish it either from linguistic or from heuristic 

intuition (26-30). 
9 The kind of intuition intended here is thus a species of what is called “heuristic 

intuition” in Burgess 2014, 27, and described as “plausible in the absence of proof” and 

“reasonable as a conjecture” in Davis and Hersh 1981, 391. 
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them to see for themselves what they, the experts, can see, i.e. by helping 

them to “represent superior problem spaces, recognize the kind of problem 

that they face as one with a proven strategy, or pursue superior strategies for 

finding new solutions on their own” (Chudnoff 2020, 476). This does not 

mean, of course, that expertly guided novices instantly acquire the expertise 

of their guides. But, as an example in the next section will show, such 

guidance can be an important step in improving one’s own intuitions and 

developing the kind of advanced capacities needed to make meaningful 

contributions to the practice of conjecturing. Let us now turn to this practice 

and the role intuition may play in it.  

3. The rational practice of conjecturing in mathematics 

By describing the activity of conjecturing as a rational practice, I would 

like to emphasise two things. First, that there are certain rules by which 

anyone who wishes to succeed in making a conjecture has to abide. And 

secondly, when an attempt is made at establishing a particular statement as 

a conjecture, there is always the possibility of demanding reasons for 

investigating its truth. Moreover, it should also be kept in mind that not only 

one can succeed or fail in conjecturing, but one can do better or worse. For 

this reason, I sometimes refer to this practice as the art of conjecturing. 

Being essentially a social practice, the art of forming mathematical 

conjectures emerges from the cooperative activity of groups of experts. As 

such, it is governed by various norms, the description of which would 

require an empirical approach, not a purely philosophical one. Particularly, 

whether a given conjecture will become fruitful or not is in part a matter of 

contingency. To become fruitful, the conjecture must not only be accepted 

by a group of sufficiently influential mathematicians (a group which, in 

borderline cases, may consist of only one member), it also needs to be 

acknowledged as worthwhile investigating and actually spark research. 

This, of course, does not imply that fruitfulness is solely a matter of 

contingency. Not every mathematical statement has the potential to spark 

the interest of the relevant community. Typically, the fruitfulness of a 

conjecture is associated with features such as generality or simplicity, depth 

or inferential power, beauty or boldness, and so forth.10 But what is more 

 

10 Note that what counts as general enough, as deep, as elegant, etc., will vary over 

time. What captured the imagination of earlier generations might appear dull to later 

mathematicians. And what mathematicians find promising today could have been rejected as 

empty or unwarranted by earlier generations. 
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important for the present investigation, is that there seem to be necessary 

conditions that any statement must fulfil in order to be successfully 

established as a potentially fruitful conjecture. It is only these conditions of 

the possibility for success and fruitfulness that I will try to articulate. 

Therefore, the constraints that are of interest here concern mainly the 

statements themselves and their relations to present and future states of 

knowledge and belief in mathematics. Most other aspects of good 

conjecturing cannot be taken into consideration here or are merely touched 

upon.  

3.1. Conditions of successful conjecturing 

As already pointed out in the introduction, not every meaningful 

mathematical statement is suitable for conjecturing. A statement that is 

intuitively evident, requiring no proof to be known as true, cannot normally 

be made a conjecture. The same holds, of course, for any statement that is 

obviously false. If someone wanted to advance as conjecture that there is 

more than one even prime number, this would not count as a serious attempt. 

Furthermore, if someone wanted to turn a statement for which a proof is 

known into a conjecture, this would also not be considered an acceptable 

attempt. Theorems as well as statements, the negation of which have been 

knowingly proved, cannot be made conjectures. If someone tried to advance 

as conjecture either the statement that there are infinitely many prime 

numbers or the statement that the primes are only finitely many, neither 

attempt would be acceptable today. 

From these simple considerations, one can already discern a first 

principle that underpins the practice of conjecturing: A mathematical 

statement can only become a conjecture if it is neither known to be true nor 

known to be false. Therefore, whether an attempt to establish a conjecture 

succeeds depends on what is known to be true and what is known to be false. 

One might ask, now, whose knowledge is meant here. Is it the individual 

knowledge of the mathematician trying to make a conjecture or rather the 

collective knowledge of the relevant community? Usually, the decisive 

factor is the community’s collective knowledge, or to be more precise, the 

collective knowledge of its competent part. If an individual tried, for 

example, to advance a well-known theorem as conjecture, that individual 

would simply be made aware of the fact that the corresponding statement 

has already been proven. The only interesting case would be if an individual 

had such superior intuition, or knowledge, that they could advance 

important statements yet incomprehensible to the members of the competent 
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community or far too remote to arouse their interest. In such a case, one 

would probably be inclined to admit that the individual has succeeded in 

making a conjecture, although it would not be accepted as such by that 

individual’s contemporaries under the given circumstances. 

To some extent, this seems to have been the case with the early, and 

highly original, work of Srinivasa Ramanujan. While it was initially met 

with rejection, incomprehension, or indifference, by certain mathematicians, 

it was later widely recognised (see Berndt and Rankin 1995). But even 

Godfrey H. Hardy, who prided himself on having discovered Ramanujan’s 

genius, was surprised by the depth of his results. He admitted to having been 

“defeated […] completely” by some of the equations Ramanujan had sent 

him, stating that he had “never seen anything in the least like them before” 

(Hardy 1940, 9). Unlike others, Hardy immediately realised the importance 

of these results. “A single look at them” was enough for him to know “that 

they could only be written down by a mathematician of the highest class” 

(9). Some equations seemed as though they had to be true, for “if they were 

not true, no one would have had the imagination to invent them” (9). 

However, Ramanujan was often unable to provide rigorous proof for the 

statements he reached, and some of them turned out to be false. In forming 

what were in fact conjectures, Ramanujan was guided, as Hardy, who 

worked with him for years, concluded, by “a mixture of intuition and 

computation” (229). 

A somewhat different case was described by William P. Thurston who, 

like many mathematicians, attached great importance to trusting his own 

intuitions (see Thurston 1994, 165). After years of studying the relationship 

between three-dimensional manifolds and hyperbolic geometry, building up 

his “intuition for hyperbolic three-manifolds”, Thurston conjectured that 

“all three-manifolds have a certain geometric structure”, thus advancing 

what eventually became known as the geometrization conjecture (174). 

Having developed not only his intuition, but also “a repertoire of 

constructions, examples and proofs”, he managed to prove the conjecture 

for Haken manifolds a few years later. This relentless work placed him in a 

position of such epistemic superiority over his peers that it took them “a 

while just to understand what the geometrization conjecture meant, what it 

was good for, and why it was relevant” (175). One difficulty Thurston had 

in passing on his results to others was that the mental models he used to 

think about the subject matter were rather idiosyncratic. At times, he 

explains, there was “a huge expansion factor in translating from the 

encoding in my own thinking to something that can be conveyed to someone 



   

 
13 

else” (175). This experience led him to invest more time and effort in 

transmitting to larger parts of the community not only his results and their 

proofs, but also his intuitive familiarity with and deep understanding of the 

ideas involved and the advanced intuitions that flowed from them (168-172, 

175-176). In other words, he used his expertise to guide others, including 

novices, towards these intuitions, helping them to develop and improve their 

own until they themselves were in a position to advance fruitful conjectures. 

These examples already illustrate various ways in which intuition 

contributes to the practice of conjecturing. What exactly its different roles 

can be will become clearer in the next section, and then again in the 

conclusion, when it comes to answering our initial question. For now, let us 

turn to other, more philosophical questions that arise from the same 

considerations. In particular, one would like to know what kind of 

knowledge and understanding is required, how much of it is necessary, and 

what must be yet unknown for statements to be valuable candidates for 

conjecturing. It will not be possible here to answer these questions 

conclusively. But by considering a few examples, I will try to give first hints. 

The focus will be on cases where the attempt to turn a statement into a 

conjecture would fail or require atypical justification to be accepted as such. 

Imagine a child who has just mastered the language of arithmetic. The 

child knows now how to assemble numbers, letters and other signs in order 

to form meaningful formulas, e.g. equations. Imagine further that this child 

jotted down the equation 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 and was now claiming that no 

natural numbers 𝑎, 𝑏, and 𝑐 satisfy the equation for any integer value of 𝑛 

greater than 2. Of course, we would not accept this as serious conjecturing.11 

Not because the statement, i.e. Fermat’s so-called Last theorem, has been 

proven in the meantime. But because a superficial and merely syntactic 

understanding of statements paired with a truth claim is not sufficient to 

make conjectures. Serious conjecturing is not guesswork. It presupposes the 

 

11 By adding the attribute ‘serious’ to the term ‘conjecture’, I do not intend to indicate 

a further constraint on conjectures – as if in addition to normal, acceptable conjectures, there 

were also serious conjectures. Rather, the attribute ‘serious’ is intended to demarcate 

mathematical conjecturing in the more technical sense of the word from conjecturing as a 

freer form of guessing corresponding to the non-technical use of the word ‘conjecture’ 

outside scientific contexts. To avoid confusion, I use the adjective ‘successful’ and its 

adverbial variant exclusively as attributes to the act of conjecturing, and refrain from 

speaking of successful or unsuccessful conjectures. What may or may not be successful is an 

attempt at conjecture. If the attempt succeeds, a conjecture results. But if it fails, no 

conjecture is established at all. 



   

 
14 

establishment of a certain conceptual environment around the notions 

involved in the conjecture. This environment should be such that its mastery 

allows for a serious attempt at proof, i.e. an attempt that would bring some 

progress and not immediately end in perplexity. Making guesses out of the 

blue, just because one has the syntactical skills to do so, is not the kind of 

conjecturing that has proven itself in mathematics. 

Admittedly, if the child in our example was called Carl Friedrich Gauß, 

we would perhaps take a second look. Gauß made his private conjecture 

about the prime number theorem when he was only 15 years old. But even 

a statement advanced by a genius or a recognized expert in the field may not 

be accepted immediately as a conjecture. This could be the case, for 

example, if the claim involved seemed overly speculative, such that no 

serious attempt at proof were foreseeable. In such cases, the mathematical 

community would be entitled to ask for reasons why this proposed claim 

should be believed to be true. If no reason can be given, the attempt at 

conjecture may be rejected as not sufficiently justified. It is unknown, 

possibly no longer knowable, exactly how Gauß arrived at his conjecture 

and whether intuition was involved.12 What is certain, however, is that 

merely alluding to an unshareable intuition would not have been very 

helpful in convincing others. Perhaps, Fermat’s conjecture of his so-called 

Last theorem was such an overly speculative move, considering that it took 

 

12 Gauß mentioned his juvenile conjecture only much later in a letter to Johann Franz 

Encke (for an English translation of the letter, see Goldstein 1973, 612-614). In this letter, he 

is eager to justify the plausibility of his conjecture by computations and other mathematical 

arguments. As to how he came to form this conjecture in the first place, he only says that 

when counting prime numbers on logarithm tables, he soon recognised that their “frequency 

is on the average inversely proportional to the logarithm” (612). How can we know from this, 

and more generally in studying the history of mathematics, whether or not intuition was at 

work in any particular instance of conjecture forming? The truth, of course, is that we may 

not know for sure. We must rely on the testimony of the mathematicians involved or of their 

contemporaries. And even if someone like Gauß assured us that intuition was at work when 

he came up with his conjecture, it is still not clear to what kind of cognitive process, if any, 

he was alluding to. Should we therefore refrain from using the term ‘intuition’ when studying 

the past? Is the only way to find out whether particular mathematicians had the relevant kind 

of intuition to examine them psychologically or, better still, to measure their neural activity 

at the precise moment when they come up with their fruitful ideas? This cannot be the case. 

From these brief considerations, I conclude rather that the term ‘intuition’ can have another 

function: a function linked to our attempts to explain the process of forming fruitful 

conjectures. It is used to fill the gap in our reconstructions of how rational enquiry ultimately 

leads to mathematical truth. In other words, the appeal to intuition is a valid step in a 

scientist’s search for truth as well as in our reconstructions of it. 
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360 years of revolutionary developments in mathematics before a proof was 

achieved. Alternatively, one could say that Fermat’s conjecture came too 

early to be fruitful from the outset – that the conjecture, like an exceptional 

wine, needed time to mature. In neither of these views, it is a paradigmatic 

example for the rationality at work in the practice of conjecturing. 

Unsuccessful conjecturing is not always due to a lack of knowledge or 

to an insufficiently developed conceptual environment, as in the example of 

the child just discussed. On the contrary, if too much is known and 

understood about the concepts involved in a statement, this can also prevent 

it from being conjectured. This would be the case, for example, if someone 

wanted to conjecture a statement that borders on truism or for which a proof 

is too easy at hand. In either case, the mathematical community may refuse 

to accept the statement as a valuable candidate for conjecturing. (The same 

holds, mutatis mutandis, for obvious and easily disproved falsehoods, of 

course.) Alternatively, the individual who made the proposal could be asked 

to explain why the search for a proof is nevertheless worthwhile. And here, 

depending on the situation, various reasons could be given. The remainder 

of this section explores several such reasons as they may occur in strictly 

axiomatic settings. 

One reason of this kind could be to know what more general truths a 

particular statement, however trivial, depends on. The question can either 

be whether a proposed set of axioms is sufficient to prove that statement, or 

whether a certain axiom from this set is necessary to do so. Neither of these 

questions involves conjecturing the particular statement whose dependency 

from the axioms is to be examined. In the first case, the aim is to find a very 

specific proof for this statement, namely one that, besides the admitted rules 

of inference, relies on nothing but the given axioms. Providing a proof that 

is valid but does not have the required connection to the axioms would not 

be accepted. But usually, when it comes to proving a conjecture, it is 

sufficient to show that it can be derived in any acceptable way, i.e. by using 

techniques and propositions that are well known in the field, the latter rarely 

being axioms alone.13 In ordinary conjecturing, one is moreover less 

 

13 The kind of practical, non-axiomatic reality referred to here is described by Thurston 

in the following terms: “Within any field, there are certain theorems and certain techniques 

that are generally known and generally accepted. When you write a paper, you refer to these 

without proof. You look at other papers in the field, and you see what facts they quote without 

proof, and what they cite in their bibliography. You learn from other people some idea of the 

proofs. Then you’re free to quote the same theorem and cite the same citations. You don’t 
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convinced of the truth of the conjectured statement than of the truth of the 

premisses one would appeal to in an attempt at proof. In the axiomatic 

setting just considered, exactly the opposite can be the case, for confidence 

in the truth of the statement one wishes to deduce is sometimes greater than 

confidence in the truth of the proposed axioms.14 

The second setting mentioned above, which is about showing the 

necessity of a certain axiom for the proof of a statement, is a case for reverse 

mathematics. The main method of reverse mathematics consists in trying to 

derive not the statement from the axiom, but conversely, the axiom from the 

statement by assuming not more than a specified base theory.15 It is obvious, 

then, that the statement is not being conjectured but assumed. What instead 

is being conjectured, one could be tempted to say, is the axiom itself. But 

again, the analogy fails, and for the same reasons as before. What perhaps 

becomes even clearer than before, is how different the aim here is from that 

of ordinary conjecturing. It is not about establishing the truth of a particular 

statement, which can be done by producing some proof or other, but rather 

about determining an explicitly specified deductive dependency, which 

imposes stronger constraints on what kind of proof will be accepted. 

The same holds for questions of axiomatic independence where attempts 

are made to deduce an axiom from the others, either directly or indirectly, 

by assuming its negation. What is conjectured here is not the axiom itself, 

even less its negation. The real conjecture is either that the axiom in question 

follows from the others, or that it does not, i.e. that its negation is compatible 

 

necessarily have to read the full papers or books that are in your bibliography. Many of the 

things that are generally known are things for which there may be no known written source. 

As long as people in the field are comfortable that the idea works, it doesn’t need to have a 

formal written source” (Thurston 1994, 168). Most of the premisses that are explicitly 

assumed in proofs of that kind do not have the degree of generality typical of foundational 

axioms. Much of the work carried out by mathematicians can do without explicit reference 

to a specific foundational theory. 
14 For simple examples from arithmetic, see Parsons 2008, 322. Besides such obvious 

examples, there is also, more generally, a certain view of mathematics according to which 

foundational axioms receive their special status not in virtue of their being intuitively evident 

or particularly plausible, but because it is possible to deduce from them familiar propositions, 

the truth of which nobody doubts. Paolo Mancosu has labelled this view, which he identifies 

in Russell, Gödel and Lakatos, among others, as “hypothetico-inductivism”, see Mancosu 

2001, 102-108. On this view, mathematical axioms are, of course, not conjectures in the sense 

intended here, but rather resemble hypotheses in the natural sciences. For the question of how 

intuition might be at play when it comes to the axioms of arithmetic and set theory, see 

Parsons 2008, §§ 54-55 (328-342). 
15 See Eastaugh 2024. 
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with the conjunction of the other axioms. As long as the expectations 

regarding consistency and dependency of the axioms hold, it is not their 

truth that is in question, but rather their logical interdependencies. However, 

as the famous fate of the parallel postulate shows, expectations can be 

drastically deceived. And if a statement loses its status as an axiom, or never 

had it in relation to an alternative system, it can, of course, be advanced as 

a conjecture in the normal sense. Whether preserving its syntactical identity 

is sufficient for being the same statement across different conceptual 

environments is another question. For now, it is sufficient to note that not 

every request for proof is a case of conjecturing. 

From these brief considerations alone, it should have become clear that 

it would be mistaken to expect a general and yet precise answer to the 

question of how much knowledge or ignorance is required to successfully 

establish a statement as a conjecture. The variability of conceivable 

situations is far too large for this. But it would certainly be worthwhile 

investigating this question more closely in various individual cases.  

3.2. Conjectures true and false 

A conjecture is an invitation to investigate and eventually demonstrate 

the truth of the statement being conjectured. By making a conjecture, a 

challenge is set up to produce a proof. And what is usually expected is a 

proof of the statement involved – not of its negation or of a substantially 

different statement. Accepting a conjecture implies therefore accepting the 

challenge to come up with a proof. It would be strange, perhaps irrational to 

accept, let alone pose this challenge if one had better reasons to believe that 

the statement being conjectured is false. Typically, then, to make or accept 

a conjecture implies the belief that the conjectured statement is probably 

true. 

Again, simple considerations suffice to yield a second principle that 

underpins the practice of conjecturing: A mathematical statement is only to 

be conjectured if it is believed to be more likely true than false. Therefore, 

whether a statement can be made a conjecture, or accepted as such, depends 

on what is believed to be true and what is believed to be false. 

One might ask, now, what kind of belief is supposed to be involved here, 

or whether belief is even the right notion. Is it really necessary to believe a 

statement to be true in order to conjecture it? And if so, how strong has that 

belief to be? Would it not be sufficient to merely assume the statement to be 

true? 
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In mathematical contexts, it is particularly important to distinguish 

conjecturing from making an assumption for the sake of proving a 

conditional or producing an indirect proof. When assuming a certain 

statement – whether it is to refute it or to infer another statement from it –, 

the steps to be taken are quite different from those to be taken when the same 

statement is being conjectured in order to prove its truth. Conjecturing 

therefore involves more than mere assumptions. But of course someone 

could advance a conjecture without actually believing it to be true, and 

others might accept it and investigate its truth. However, this would be a 

deviant case of conjecturing, if only because the reasoning behind it remains 

obscure. It is clear what conjecturing in mathematics normally aims at: to 

prove the truth of the conjectured statements. In order to allocate limited 

resources in a way that increases the chances of success, the obvious thing 

to do is to only conjecture statements that seem more likely to be true than 

false. Acting contrary to this principle would, in general, undermine 

conjecturing as it is practised in mathematics. And without conjecturing, 

mathematics would be a completely different matter, if at all. 

What is also clear is that mathematicians do have beliefs about the truth 

of certain unproven statements, and that the confidence accompanying their 

beliefs may vary in degree. As Timothy Gowers puts it in a recent paper, 

mathematicians “are extremely confident that Goldbach’s conjecture is true 

and that π is a normal number, they are quietly confident but with not quite 

100% certainty that the Riemann hypothesis is true, they think that almost 

certainly P≠NP (though a few outliers think that this confidence is 

misplaced), and think it is probably not possible to factorize a large integer 

in subexponential time but would not be unduly surprised if it turned out to 

be possible” (Gowers 2023, 58). Conjectures, therefore, can be linked to 

beliefs of various strength, although not all differences of degree have the 

same relevance for conjecturing. After a certain lower threshold, the degree 

of confidence in a statement’s truth becomes secondary to the question of 

whether it should be advanced as a conjecture or not.16 On the other hand, 

when it comes to the question of abandoning an established conjecture, an 

initially higher degree of confidence means that stronger evidence for the 

falsity of the statement must be presented. 

 

16 In view of this, one might be inclined to treat conjecturing as a sui generis attitude. 

However, this would not spare us the work of clarifying how this attitude is connected with 

the various beliefs mathematicians hold. 
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The pressing problem now is to make sense of this notion of believing a 

mathematical statement to be more likely true than false or vice versa. How 

can we even speak of probabilities if mathematical statements are either 

necessarily true or necessarily false? Since this intricate issue cannot be 

discussed here in the detail it deserves, what follows is limited to a few 

points that are central to our investigation. 

The first thing to note is that the sort of probability mathematicians may 

be inclined to assign to a statement’s being true or being false is usually not 

expressible in terms of precise numerical values. A statement could be 

deemed ‘plausible’, ‘very probable’ or ‘highly unlikely’, for instance. But, 

as George Pólya convincingly argued in his classic Mathematics and 

Plausible Reasoning, it would be nonsensical to ask for an exact percentage, 

at least in most cases (Pólya 1954, 68-70; 1968, 109-111).17 One reason for 

this is that whether a statement is considered to be more likely true than 

false, or whether one is prepared to assign it any probability at all, depends 

heavily on one’s own knowledge, beliefs, and even preferences and 

predispositions – all of which are hardly quantifiable. Yet, the slightest shift 

in one of these factors can lead to significant changes in related probability 

judgements. 

Take for example the Banach-Tarski paradox, a theorem in set-theoretic 

geometry proved in 1924 by the two mathematicians from which it received 

its name. In one version, it affirms the possibility of decomposing a ball in 

three-dimensional Euclidean space into a finite number of pieces such that 

they can be re-assembled into two balls, each of equal size to the first 

(Banach and Tarski 1924, 260-262). At first glance, and with not much more 

knowledge than what is required to superficially understand the 

mathematics involved, the statement appears almost certainly false, as it 

seems to contradict our common spatial intuition. Thus, if at some point in 

the early 1920s Tarski had told me that, against all odds, he wanted to 

conjecture this very statement, clearly, I would have been entitled to ask for 

reasons why it should be believed to be more likely true than false. After all, 

the truth of a conjecture has to be plausible enough as to convince others to 

 

17 This is in line with much of the more recent literature on plausible reasoning in 

mathematics. For further discussions, see Franklin 2016 and Corfield 2001 (as referred to in 

Gowers 2023, 76). For an elaborate defence of imprecise credences and their rational 

permissibility, see Isaacs, Hájek and Hawthorne 2022. 
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put efforts into proving it. And if Tarski had been unable to provide any 

evidence, the conjecture could have been rejected as insufficiently justified.  

In fact, Tarski would have been perfectly able to corroborate his belief 

by invoking what Pólya calls “patterns of plausible reasoning” and backing 

them up with mathematical certainties. For example, Tarski could have 

pointed out that his conjecture implies a well-known theorem proved a few 

years earlier by Hausdorff (for the mathematical details, see Tomkowicz and 

Wagon 2016). In doing so, he would have activated the pattern described by 

Pólya as “verification of a consequence”: If A implies B and B turns out to 

be true, this makes A more credible (Pólya 1968, 3-5). The fact that 

Hausdorff’s theorem appears to be almost as paradoxical as Tarski’s own 

statement is not detrimental to his conjecturing it. On the contrary, the 

credibility of Tarski’s conjecture is even increased by this fact, the relevant 

pattern of reasoning now being that of the “verification of an improbable 

consequence” (Pólya 1968, 7-9; for further explanations, see Gowers 2023, 

76-77). To bolster his position, Tarski could also have gone the other way 

round by referring to a more general statement from which his conjecture is 

seen to follow (see Gowers 2023, 78-81). In particular, he could have tried 

to show how to derive his paradox from the axiom of choice by an ingenious 

use of it. If successful, he would not have merely provided further evidence 

for his conjecture, but arrived at a sufficient proof, at least in the eyes of 

most mathematicians. Those who prefer to reject the axiom of choice, on the 

other hand, would have seen Tarski’s argument as a reductio ad absurdum, 

thereby reinforced in their rejection of the axiom. All of these are possible 

ways in which opinions about Tarski’s conjecture could have been 

influenced.18 

The recent literature largely agrees with Pólya’s account of how 

mathematicians tend to, or should, revise their beliefs in view of changing 

evidence. Often, the emphasis is placed on the objectivity of the relations 

between evidence and belief that are involved in such processes (see 

Franklin 2016, 15-16; Gowers 2023, 83-92). And it is certainly true that the 

forming of conjectures cannot be understood as a merely subjective 

phenomenon that manifests itself in arbitrary ways in different individuals. 

 

18 For an insightful discussion of the Banach-Tarski paradox, its mathematical history 

and its bearing on issues related to intuition, see Feferman 2000, 323-328. For further 

information on the historical background against which Banach and Tarski developed their 

proof, see Feferman and Feferman 2008, 43-52. It seems, however, that not much is known 

about the conjecturing phase. 
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In accordance with Pólya, however, I would like to emphasise here the 

“double nature” of the reasoning involved, making it appear “sometimes as 

‘objective’ and sometimes as ‘subjective’” (Pólya 1968, v).19 This means 

that in our elucidations of the practice of conjecturing, some space should 

be allowed for subjective factors which cannot be shared with others or for 

which objectivity cannot always be claimed. Diverging preferences in the 

choice of admissible axioms could be a case in point, dispositional 

differences in weighting evidence when assigning probabilities another one 

(see Pólya 1968, 113-116). 

This distinction between objective and subjective factors is all the more 

pertinent to the present investigation, as expert intuition can be seen to 

fluctuate between the two categories. Contrary to common intuition, it is 

typically not present in many. And, in exceptional cases, it may only 

manifest itself in a single expert, with no one else being able to share it. 

However, it does not follow from this that expert intuition can only serve as 

subjective evidence, even in such exceptional cases. First, the expert can 

reveal that her conjecture is based on a certain intuition she has, without 

enabling others to experience the intuition for themselves. Those who are 

unable to share the expert’s intuition can still include it as objective evidence 

in their evaluation of probabilities. To return to our earlier example, if Tarski 

had told me that his conjecture was based on some advanced intuition he 

had, I would have taken his word for it and thereby accepted his conjecture 

as sufficiently probable. Secondly, and more importantly, it is quite certain 

that Tarski, with all his expertise, would have been able to guide others, even 

novices, to see for themselves what he saw, i.e. to make accessible the 

content of the intuition that led him to consider such counterintuitive 

decompositions in the first place. This, in turn, would have potentially 

helped others to improve their own intuitions, more precisely to learn how 

to properly constrain their common geometric intuitions and to clearly 

distinguish them from the more abstract intuitions needed in set theory (see 

Feferman 2000, 325-330). Indeed, this may have been one of the effects that 

results such as the Banach-Tarski paradox had on parts of the mathematical 

 

19 James Franklin elaborates Pólya’s observations in terms of a logical theory of 

probability, emphasising that Pólya “rightly saw” that the plausibility relevant for 

mathematical conjecturing “was not a matter of subjective impressions, but it was a matter 

of the degree of belief that was justified by the evidence” (Franklin 2016, 15). But Pólya’s 

remarks about the double nature of plausible reasoning in mathematics make him seem more 

like a proponent of a position between subjective and objective Bayesianism. On the question 

of where Pólya fits into the spectrum of Bayesians, see Corfield 2001. 
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community, especially on the younger generation.20 Under the right 

circumstances, then, expert intuition not only trumps other kinds of 

evidence, including common intuition, it can also help to refine it and 

improve its use. 

But what about statements on which all our intuitions are silent? And 

more generally, what about statements for which there are no reasons to 

believe them to be more likely true than false? Is it not possible to conjecture 

such statements? Well, rather than advance a conjecture, one would simply 

formulate an open problem. Sometimes the difference between conjectures 

and open problems is blurred by the fact that some believe the statement in 

question to be true, while others prefer to stay agnostic about it. But this 

should not conceal the fact that the strategies for proving a specific claim 

will most often differ from the strategies for disproving that claim. 

What I would like to maintain, therefore, is that to advance a conjecture 

is not simply to say: “Take a look at this statement. It is interesting and it 

could be fruitful to investigate it further.” Conjecturing essentially contains 

a truth claim. Like every science, mathematics strives for truth. However, 

due to the intimate connection between truth and falsity in mathematics, the 

truth claim involved in a conjecture can in certain cases become next to 

negligible. As we shall see in the next section, this has to do with the fact 

that whether a statement has the potential to become a fruitful conjecture 

does not depend, in general, on its truth value. False conjectures can become 

as fruitful as true ones. 

3.3. Forming potentially fruitful conjectures 

When doing mathematics, mathematicians are not always only 

interested in getting certainty about the truth value of statements. Often, 

what is sought after is more than just knowing that something is true or that 

something is false. Understanding why it is true, or even why it is false, can 

be at least as important and worthwhile an investigation. Accordingly, one 

does not only want to conjecture a true statement, but a statement whose 

investigation will turn out to be fruitful by improving mathematical 

understanding. So what is being sought after are conjectures that help to 

 

20 See Moore 1982, 284-290. As noted in Tomkowicz and Wagon 2016, 311, the 

Banach-Tarski paradox also “has a historical importance for mathematics that is completely 

independent of foundational questions and the axioms of set theory”, since it proved fruitful 

for the development of various mathematical ideas, in particular for the notion of amenability 

in groups. 
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deepen or broaden our understanding of the statement’s conceptual 

environment by triggering the development of new concepts, methods, even 

theories. And for this, the statement conjectured needs a certain potential of 

becoming fruitful. 

But what exactly is meant here by fruitfulness? And what does it take 

for a conjecture to become fruitful? What does it mean to say that a 

conjectured statement has the potential of becoming fruitful? And how does 

one know whether a given statement has or lacks that potential? 

Admittedly, I use the term ‘fruitful’ in a rather unspecific way here. I try 

to cover a vast multitude of aspects that would have to be disentangled again 

in more elaborated discussions of the topic. What can be said now is just so 

much: For a conjecture to actually become fruitful it needs to be 

investigated, to actually spark the interest of mathematicians. Therefore, 

whether a conjecture becomes fruitful depends, at least in part, on 

contingencies like the preferences of dominant groups within the 

mathematical community, or the authority of an individual advancing the 

conjecture, etc. But clearly, not every mathematical statement has the 

potential of becoming fruitful. To show that a statement lacks that potential, 

one could, for example, expose its triviality or narrowness (see, however, 

the example of Desargues’s theorem mentioned above). On the other hand, 

to conclusively show that a statement has the potential of becoming fruitful, 

there is no way around investigating the statement and coming up, 

eventually, with a proof or disproof. Fruitfulness is then manifested in the 

fact that such investigations improve understanding, for example by 

revealing a “beautiful” uniformity across a wide range of variation, or that 

if, on the contrary, these investigations only exacerbate an existing mystery, 

they at least prompt further research.21 

These considerations suggest a third principle at work in the practice of 

conjecturing: Often, one of the aims of advancing a conjecture is to help 

improve mathematical understanding in significant ways rather than just 

attaining truth. For making this possible, the conjectured statement must 

possess the potential of becoming fruitful. Therefore, whether a conjecture 

will actually spark the interest of the competent community often depends 

on whether it appears potentially fruitful or not. 

 

21 For this distinction between “two flavors of judgments of fruitfulness” – one that 

emphasises the usefulness of concepts or statements, as opposed to one that might be more 

closely related to aesthetic judgements –, see Tappenden 2012, 216-219. 
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Obviously, this third principle is not as constraining as the first two. It is 

certainly possible to make a conjecture that clearly could not become 

fruitful. One might want to investigate its truth for reasons unrelated to 

matters of understanding, e.g. because it had been stated a long time ago, or 

in order to provide rigorous proof for all truths of a given domain within a 

project of formalisation. However, uninteresting statements, although they 

may be accepted as conjectures, will most likely not attract the necessary 

attention to be investigated much. In a certain way, then, conjectures are 

better off when they are held to be false rather than unfruitful. Better be 

wrong than boring, one could say. Why is this so? 

To doubt the truth of a conjecture is not the same as to deem it unfruitful. 

One might believe the conjecture to be false and yet be highly interested in 

settling the question of its truth value once and for all – even if this means 

proving the conjecture to be false. In such a case, one could be said to 

investigate the negation of the statement first advanced as conjecture. This 

is not to dismiss the initial conjecture totally, but to try to decide the question 

of its truth in the negative, so to speak. Moreover, a false conjecture can 

become fruitful in two different ways. Either, by disproving the statement 

initially conjectured, one has proved the truth of an equally interesting 

statement, namely its negation. Or, the negation of the initial statement is 

uninteresting, but the reasons why it is false are worth investigating. 

A good example for a false conjecture, the negation of which turned out 

to be an equally interesting statement, is the decidability of first-order logic. 

Hilbert and members of his school conjectured, believed and clearly hoped 

in the 1920s, and some still in the 1930s, that a decision procedure for first-

order logic not only existed, but could perhaps be given one day. The basic 

intuition behind it was rather philosophical in nature, and Hilbert had 

articulated it in his famous axiom of solvability, according to which every 

mathematical problem must have a solution. But after Gödel had presented 

his theorems, the conjecture became very improbable. Accordingly, the 

question of decidability did not turn into an open problem, but instead the 

negation of the initial statement became the conjecture sought after. Neither 

Church nor Turing hoped to come up with proof for the existence of a 

decision procedure, let alone the formulation of such a procedure. Instead, 

what they tried to do, and eventually succeeded in doing, was to show that 

and, to some extent, why no decision procedure could exist. Their conjecture 

proved to be enormously fruitful in that it triggered the development of new 

theories, arguably even of new disciplines. 
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The second case mentioned above is when the negation of the 

conjectured statement is not interesting in itself, but the reasons for the 

statement’s being false are. Imagine that, against all odds, a counterexample 

to Goldbach’s conjecture was found. Although the specific instance for 

which the conjectured statement was proven false could be uninteresting, 

one would still want to better understand why the statement holds for so 

many even numbers but almost miraculously not for others (see Gowers 

2023, 93). One might also want to know whether it is false of finitely or 

infinitely many even numbers, etc. The investigation of such questions 

could very well lead to the result that the initial conjecture – although wrong 

and its negation in itself not very interesting – becomes fruitful in 

unexpected ways. 

Since false conjectures can become just as fruitful as true ones, the 

ability to pick out the statements that have the right potential regardless of 

their truth value is in a sense even more important for the advancement of 

mathematics than having a keen eye for its truths. As should have become 

clear now from various examples, intuition, particularly that of an expert, 

can be a decisive factor when it comes to aiming at mathematical truths. But 

just as it provides orientation in the search for truth, intuition can also help 

when it comes to identify potential fruitfulness. In this role, intuitions will 

act neither as a source of evidence nor as evidence themselves. They will 

rather serve to filter out from the countless sterile statements those that are 

of mathematically valuable content, be it true or false. And the way in which 

this selection is made will reflect personal predispositions, aesthetic 

preferences and cultural influences to a far greater extent than if it were only 

a matter of truth. It is here that the individuality of the conjecturer can fully 

express itself, revealing their mathematical style. 

4. Conclusion 

Let us now take stock of the main findings and answer the question 

raised at the beginning of this paper. In mathematical conjecturing, intuition 

serves primarily as a source of potential candidates for conjecture. Since 

forming and advancing conjectures in mathematics is a rational practice, it 

is rooted in a manifold background of knowledge and beliefs about 

mathematical matters. What will be accepted as a serious conjecture 

depends on what the community concerned knows and ignores, what it 

believes to be true and believes to be false. Here already, various preferences 

and dispositions may come into play. These latter factors, whether due to 

personal temperament or mathematical culture, will weigh even more 
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heavily when it comes to the decision of allocating time and effort in order 

to actually investigate the truth of a particular conjecture. The challenge is 

not only to pick a true statement, but one which will prove fruitful in that its 

investigation will yield a better understanding of its conceptual environment 

or prompt further research. Although this mixed background puts certain 

constraints on what constitutes good conjecturing, it still leaves open a wide 

range of possible lines for research. The main role of intuition is to help 

mathematicians find their way through this sheer multitude and to “see the 

end from afar”.22 This heuristic role has two distinct and, to some extent, 

independent aspects. The first is to help identify those statements that, when 

put in the right light, appear more likely to be true than false. And the second 

aspect is to grasp what has the potential to become fruitful. But since it can 

be just as revealing to show the falsity of a statement as it is to show its truth, 

false conjectures can become just as fruitful as true ones. And conjectures 

that show the right potential, even if they turn out to be false, will generate 

more interest than conjectures that appear unfruitful from the outset. 

Intuition for the fruitful may therefore claim a certain priority over intuition 

for the true. 

Acting as guiding light when navigating the unknown is not the only 

role that intuition plays in conjecturing. Even though intuition, especially 

that of experts, is generally considered more reliable than random 

guesswork, it is not blindly followed. As the knowledge and beliefs in the 

background constantly change, and the preferences and dispositions may 

vary too, the process of forming conjectures can be quite dynamic. New 

evidence, or shifts in the weighting of existing evidence, can lead to changes 

in probability assignments such that the initial statement of a conjecture 

must be adjusted to claim the truth more convincingly. In some cases, this 

can lead to the statement’s negation becoming the new conjecture. In such 

processes, the intuitions themselves, whether they are common or of the 

rarer kind typically found in experts, will sometimes be counted as evidence 

or counterevidence. And so, as a factor alongside others, they become 

entangled in the dialectic of conjecture forming and, ultimately, in the search 

 

22 As Henri Poincaré phrased it: “Pure analysis puts at our disposal a multitude of 

procedures whose infallibility it guarantees; it opens to us a thousand different ways on which 

we can embark in all confidence; we are assured of meeting there no obstacles; but of all 

these ways, which will lead us most promptly to our goal? Who shall tell us which to choose? 

We need a faculty which makes us see the end from afar, and intuition is this faculty. It is 

necessary to the explorer for choosing his route; it is not less so to the one following his trail 

who wants to know why he chose it” (Poincaré 1958, 22). 
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for proof. Again, it is expert intuition which, in this justificatory role too, 

will normally prevail over more common kinds of intuition. Where it is not 

shared, the intuition of an expert can still be included as objective evidence 

by others in their evaluation of probabilities. But to significantly increase 

the justificatory weight of their intuitions, experts will try to guide others so 

that they can intuit for themselves how things probably are. This will be 

particularly useful in cases where the expert’s intuition contradicts current 

beliefs and requires a re-evaluation or refinement of more common 

intuitions. 

Besides persuasion, the effort to make advanced intuitions accessible to 

others can also serve a different purpose. For it offers others the opportunity 

to develop and improve their own intuitions, even in ways that may seem 

counterintuitive, thus helping to spread the kind of intuitive familiarity with 

the subject matter that enabled the expert to make a good conjecture in the 

first place. Here, then, is another role for intuition which is essential to the 

mathematical practice of conjecturing: to instill that close acquaintance with 

and deep understanding of conceptual environments from which alone 

fruitful forays into unknown regions of mathematical truth can be 

attempted.23  

 

23 I wish to thank the participants of the Nancy-Liège Workshop on Mathematical 

Intuition (November 2023), of the Colloquium in Theoretical Philosophy and History of 

Philosophy at the University of Zurich (November 2023), and of the 25th Rheinisch-

Westfälisches Seminar zur Geschichte und Philosophie der Mathematik (July 2024), as well 

as the members of the group Origins of Contemporary European Thought 1837-1938 at the 

University of Geneva and two anonymous referees for their helpful comments.  
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